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Haskell

Pure functional

Lazy

Statically typed

With strong types and type inference

Compiled (with an interpreter)
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Why learn Haskell

Probably not to find a job (0 vacancies in Ukraine /)

It’s a challenge

Expand your mind with no illegal substances

Familiarize yourself with FP before everyone else

Write programs (ecosystem is surprisingly good)
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It’s a good language

Expressive

Reliable

Easy to support
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Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Functional

Broadly speaking, functional = Haskell

Functions are first-class citizens

Program is an expression rather than a list of instructions

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 6 / 12



Functional

Broadly speaking, functional = Haskell

Functions are first-class citizens

Program is an expression rather than a list of instructions

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 6 / 12



Functional

Broadly speaking, functional = Haskell

Functions are first-class citizens

Program is an expression rather than a list of instructions

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 6 / 12



Functional

Broadly speaking, functional = Haskell

Functions are first-class citizens

Program is an expression rather than a list of instructions

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 6 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning
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Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win
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Let’s jump right in

Treap a.k.a. randomized binary search tree

Regular expression engine
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https://github.com/artemohanjanyan/simple-regex
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Installation

https://www.haskellstack.org
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End

Thanks for your attention!
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