
Introduction to Haskell

Artem Ohanjanyan

LvivHaskell

24.11.2019

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 1 / 12



Haskell

Pure functional

Lazy

Statically typed

With strong types and type inference

Compiled (with an interpreter)

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 2 / 12



Haskell

Pure functional

Lazy

Statically typed

With strong types and type inference

Compiled (with an interpreter)

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 2 / 12



Why learn Haskell

Probably not to find a job (0 vacancies in Ukraine /)

It’s a challenge

Expand your mind with no illegal substances

Familiarize yourself with FP before everyone else

Write programs (ecosystem is surprisingly good)

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 3 / 12



Why learn Haskell

Probably not to find a job (0 vacancies in Ukraine /)

It’s a challenge

Expand your mind with no illegal substances

Familiarize yourself with FP before everyone else

Write programs (ecosystem is surprisingly good)

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 3 / 12



Why learn Haskell

Probably not to find a job (0 vacancies in Ukraine /)

It’s a challenge

Expand your mind with no illegal substances

Familiarize yourself with FP before everyone else

Write programs (ecosystem is surprisingly good)

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 3 / 12



Why learn Haskell

Probably not to find a job (0 vacancies in Ukraine /)

It’s a challenge

Expand your mind with no illegal substances

Familiarize yourself with FP before everyone else

Write programs (ecosystem is surprisingly good)

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 3 / 12



Why learn Haskell

Probably not to find a job (0 vacancies in Ukraine /)

It’s a challenge

Expand your mind with no illegal substances

Familiarize yourself with FP before everyone else

Write programs (ecosystem is surprisingly good)

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 3 / 12



Why learn Haskell

Probably not to find a job (0 vacancies in Ukraine /)

It’s a challenge

Expand your mind with no illegal substances

Familiarize yourself with FP before everyone else

Write programs (ecosystem is surprisingly good)

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 3 / 12



It’s a good language

Expressive

Reliable

Easy to support

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 4 / 12



It’s a good language

Expressive

Reliable

Easy to support

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 4 / 12



It’s a good language

Expressive

Reliable

Easy to support

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 4 / 12



It’s a good language

Expressive

Reliable

Easy to support

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 4 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Used for

Compilers

Code analyzers

Blockchain

Web backend

. . .

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 5 / 12



Functional

Broadly speaking, functional = Haskell

Functions are first-class citizens

Program is an expression rather than a list of instructions

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 6 / 12



Functional

Broadly speaking, functional = Haskell

Functions are first-class citizens

Program is an expression rather than a list of instructions

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 6 / 12



Functional

Broadly speaking, functional = Haskell

Functions are first-class citizens

Program is an expression rather than a list of instructions

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 6 / 12



Functional

Broadly speaking, functional = Haskell

Functions are first-class citizens

Program is an expression rather than a list of instructions

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 6 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Pure

Immutability

No side effects

Result of the function is always the same

Useful for:

Equational reasoning

Refactoring

Parallelism

Easier reasoning

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 7 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Lazy

User-defined control structures

Infinite data structures

Efficient functional programming for free (e.g. efficient higher-order functions)

However, sometimes it makes things more complicated

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 8 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 9 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 9 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 9 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 9 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 9 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 9 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 9 / 12



Types

Algebraic Data Types

Powerful parametric polymorphism

Higher-kinded types

Type classes

Type inference

Many more

FP + Types = Win

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 9 / 12



Let’s jump right in

Treap a.k.a. randomized binary search tree

Regular expression engine

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 10 / 12

https://gist.github.com/artemohanjanyan/a76faddf75e325dd04624680e89bd93b
https://github.com/artemohanjanyan/simple-regex


Let’s jump right in

Treap a.k.a. randomized binary search tree

Regular expression engine

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 10 / 12

https://gist.github.com/artemohanjanyan/a76faddf75e325dd04624680e89bd93b
https://github.com/artemohanjanyan/simple-regex


Installation

https://www.haskellstack.org

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 11 / 12

https://www.haskellstack.org


End

Thanks for your attention!

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 12 / 12



End

Thanks for your attention!

Artem Ohanjanyan (LvivHaskell) Introduction to Haskell 24.11.2019 12 / 12


